Introduction to Digital Imaging

Arthur G. Sutsch Institute for Computer-assisted Research in Astronomy The Observatory, Alterswil, Switzerland (c) 1999

Problems

- Size of images may vary from a few bytes to more than 100 Mbytes
- Allowed storage space
- Time needed for compression and retrieval

Criteria

Range of values - resolution of original, black and white, gray scale, colour

- Compression to apply is 1 to 1000 times depends on original and desired quality
- Quality Lossy or Lossless

Algorithms

Algorithm	Туре	Data	Ratio
RLE LZW Huffman Jpeg Wavelet Mpeg	Lossless Lossless Lossy Lossy Lossy	Binary images Text Text Still images Still images Movies	2 to 3 2 to 3 2 to 3 5 to 50 2 to 100+ ~ 1000 x

Run Length Encoding - RLE

Based on repetitions which are replaced by the value repeated and the number of occurrences:

- to encode BBBBKCCCCCHAAAAAA4
- encoded @4BK@5CH@6A4
- lossless
- used in the medical industry

Lempel, Ziv, Welch - LZW

Dictionary based system

- builds a dictionary of input data in order to avoid repetitions. Patterns of data are replaced by codes
- the most widely used algorithm PKZIP

Joint Photographers Expert Group - JPEG

Still image compression

- achieves compression by deleting some of the high frequencies in an image
- used on the Web and by NASA for satellite Earth surveys
- several algorithms lossless and lossy
- typical compression 10 to 50x
- JPEG breaks down after approx. 80x compression

Wavelets

The best algorithm available

- Progressive encoding, images can be visualised at different resolutions
- Wavelets are mathematical functions: they cut up data into different frequency components, each of which is then studied with a resolution matched to its scale
- many types of Wavelets no standard yet

Compression Ratio 190:1

Compression Ratio 337:1

JPEG

Wavelet Image

Compression Ratio 330:1

JPEG

Wavelet Image

Compression Ratio 396:1

JPEG

Wavelet Image

JPEG versus Wavelet

JPEG

- looses many colours and falsifies the remaining colours
- significant decrease in contrast
- significant decrease in colour saturation

Wavelet

- does not loose significant amount of colours
- contrast of the original is maintained
- colour saturation of original is maintained

JPEG 2000

- Wavelet based
- Progressive multi-resolution decompression

Uses for Image Compression

Almost everybody:

- Banks signatures, personnel photos, brochures
- Museums
- News agencies
- Hospitals
- Sporting events
- Documentaries
- Internet
- Anyone or company requiring massive photographic archives

Moving Pictures Experts Group - MPEG

Video

- Several versions Mpeg1 for normal TV
 Mpeg2 the TV/DVD format
 Mpeg4 for computer video
- Takes more time to compress than to decompress
- Decompression must be in real-time
- Requires relatively fast computers

Converting Movies to a Digital Format

Video source must be highest quality possible

- BetaCam SP was the preferred format for its quality and precision at the time
- VHS and Super VHS are generally not good enough
- different formats must be considered: 4:3

16:9

2.35:1

- custom formats: Internet and Reuters Business TV

Uses for Video compression

For almost everything

- Banks, Education, Publicity, Surveillance
- Museums
- New agencies
- Hospitals
- Documentaries
- Movies
- Leisure
- Sporting events
- Surveillance in parking, public areas
- All forms of education, schooling
- Internet
- Anyone or company requiring video archives

Introduction to Digital Imaging

Arthur G. Sutsch Institute for Computer-assisted Research in Astronomy The Observatory, Alterswil, Switzerland (c) 1999

